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Abstract 

NTRU is a post-quantum public key cryptography scheme based on operations in polynomial 

quotient rings reduced 2 different moduli. Current attacks (described in this paper) are based off 

finding the private key as a short vector in a well-constructed lattice. This problem, known as the 

shortest vector problem (SVP), is known to be a hard problem in general. 

This paper presents another attack based not on lattice reduction, but on finding subsets that sum 

to certain targets, known as the Subset Sum Problem (SSP). While the SSP is NP-Complete, it is 

a lot better studied than the SVP, and has algorithms with in pseudo-polynomial runtimes. It is 

our hope that this different perspective provides more insight into NTRU. 

 

Introduction 

NTRU was proposed by Hoffstein, Pipher and Silverman and presented in Crypto ‘96 [1]. Since 

then, many different variants of NTRU have been made with small tweaks [2]. This paper looks 

at one particular variant – NTRU-HPS. After a short description of the scheme, we look at some 

naïve brute force attacks, then at the current approach to attacks via lattice reduction algorithms, 

before presenting our own attack based on the Subset Sum Problem. Afterwards, we sketch a 

possible dynamic programming solution for illustration. Note that the algorithm is for 

understanding, and that faster algorithms to solve the Subset Sum Problem exist. 

 

The NTRU Cryptographic System 

In NTRU, we pick integers (𝑛, 𝑝, 𝑞)  ≥  1 such that gcd(𝑛, 𝑞)   =   gcd(𝑝, 𝑞)   =  1 and let 𝑅 and 𝑅𝑞 

be polynomial quotient rings 

𝑅  =  
ℤ[𝑥]

(𝑥𝑛−1)
,    𝑅𝑞   =  

ℤ/𝑞ℤ

(𝑥𝑛−1)
. 

An element 𝑓 ∈ 𝑅 can also be expressed as a vector: 𝑓  = ∑𝑛−1
𝑖=0  𝑓𝑖𝑥

𝑖  =  [𝑓0, 𝑓1,   …  , 𝑓𝑛−1]. 

Next, we define the product of polynomials in 𝑅 as 

𝑎(𝑥)  ⋆  𝑏(𝑥)  =  𝑐(𝑥), where [𝑥𝑘]𝑐(𝑥)  = ∑ 𝑎𝑖
 
 𝑖+𝑗 ≡ 𝑘 (mod 𝑞) 𝑏𝑗 . 

This is in fact just regular polynomial multiplication, where each term 𝑥𝑛+𝑘 is reduced to 𝑥𝑘. 

This operation is the same in 𝑅𝑞 , except that coefficients of the product are reduced modulo 𝑞 . 

For NTRU-HPS, we define 𝑇 as the set of polynomials in 𝑅 with coefficients −1,0,or 1. We also 

define 𝑇(𝑑) as the set of polynomials in 𝑅 with 𝑑/2  coefficients as 1 , 𝑑/2  coefficients as −1 and 



   

 

  

 

remaining coefficients as 0 . These polynomials are termed ternary, meaning that they only 

contain 3 different coefficients. In this case, these coefficients are centered around 0 . 

In NTRU, we have public perimeters (𝑛, 𝑝, 𝑞) and private keys 𝑓 ∈ 𝑇  and 𝑔 ∈ 𝑇(𝑞/8 − 2). For 

cleaner notation, we let 𝑑  =  𝑞/16 − 1  from here on out. For 128-bit security (commonly used 

today), NIST recommends parameters (𝑛, 𝑝, 𝑞)  =  (509,3,2048). We will be using the 

approximation 𝑑  ≈  𝑛/4 . For more details in implementation, see [2]. The underlying 

mathematical problem for NTRU is: Given ℎ ∈ 𝑅𝑞, find 𝑓 and 𝑔 such that 𝑓  ⋆  ℎ  ≡  𝑝𝑔 (mod 𝑞), 

where 𝑝 is usually 3 . We also note that for a key (𝑓, 𝑔), any rotation of that key (𝑥𝑘  ⋆  𝑓, 𝑥𝑘  ⋆  𝑔) 

will also be a viable key. While there might exist alternative (𝑓′, 𝑔′) that fulfil the equation 

above, the chances of this occurring are astronomically small [3, Ch. 6.10.2]. 

 

A Brute Force Attack 

We begin by looking at a naïve brute force attack. Since 𝑓 is ternary, it can be thought of as a 

string of 1 s, −1  s and 0 s. Since 𝑓 is random, the number of 1 s, −1 s and 0 s is approximately 

𝑛/3 . This brute force approach tries every possible combination. Mathematically put, we will be 

finding the solution set of 𝑓0
2 + 𝑓1

2 +⋯+ 𝑓𝑛−1
2   ≈  2𝑛/3. Geometrically, this solves for integer 

points on an 𝑛 - sphere of radius approximately √2𝑛/3. However, as each 𝑓𝑘 can take on 

3 different values, we have a time complexity on the order of Ο(3𝑛) . 

In addition, note that we can arbitrarily pick the value of 𝑔0 (as there will exist some cycle of 

𝑓 that will result in that corresponding 𝑔 ). Setting 𝑔0 = 0 gives 

 𝑝  ⋅  𝑔0 =  (ℎ0𝑓0 + ℎ1𝑓𝑛−1 +⋯+ ℎ𝑛−1𝑓1)  =  0. 

Notice that 𝑝𝑔0 can thus be expressed as the dot product of ℎ with a cycle of the reverse of 𝑓 . 
More specifically, if 𝐽 is an 𝑛 × 𝑛 exchange matrix, then 𝑝𝑔0  =  ⟨ℎ,  𝑥  ⋆  𝐽𝑓⟩  =  0 . This implies 

ℎ and 𝑥  ⋆  𝐽𝑓 are orthogonal vectors. Geometrically speaking, we now know 𝑓 lies on the 

intersection of the surface of an 𝑛 - sphere and some specific 𝑛 − 1 subspace (An illustration is 

given in Annex A). Algebraically, this gives us another equation, decreasing the number of 

possible keys 𝑓′ by 3 . Since there are approximately 𝑛/3  ⋅  0 s that can be considered 𝑝𝑔0, we 

get an attack of Ο(3𝑛/𝑛) attempts. 

We can extend this using the probabilistic argument that for large 𝑛 , there is a high chance that 

there exist 2 (or more) arbitrary terms separated by a chosen distance (i.e. that there exists some 

𝑝𝑔𝑖   =  𝛼 and 𝑝𝑔𝑖+𝑘  =  𝛽  for known 𝛼, 𝛽  ∈  {−3,  0,  3},  0 < 𝑘 ≤ 𝑛 − 1). This gives us an 

additional equation to work with, decreasing the number of combinations by 3. This argument 

can be extended so long as the probability of such a case not occurring remains very low. 

 

  



   

 

  

 

Lattice Reduction Attacks 

Before diving into the attack, we will give some background on lattices. We will assume readers 

are familiar with the definitions of vector spaces, span, independence and vector bases. 

By definition, 𝑛 linearly independent vectors will span an 𝑛 - dimensional vector space. Consider 

a set of independent vectors 𝑉  =  {𝑣1, … , 𝑣𝑛} where 𝑣𝑖 ∈ ℤ𝑛. We define the lattice spanned by 𝑉 , 
𝐿(𝑉), to be the set of all vectors that can be formed by a linear combination of vectors in 𝑉 with 

integer coefficients: 𝐿(𝑉)  =  {𝑎1𝑣1 +⋯+ 𝑎𝑛𝑣𝑛:  𝑎𝑖 ∈ ℤ}. For the purposes of this paper, we will 

assume that all lattices have integer coordinates. Similar to vector bases, 𝑉′ is a basis for 𝐿(𝑉) if 
and only if 𝐿(𝑉)  =  𝐿(𝑉′). For more details, see [3, Ch. 6.4]. 

Suppose that {𝑣1, … , 𝑣𝑛} is a basis for 𝐿 and {𝑤1, … , 𝑤𝑛} are vectors in 𝐿 . In other words, each 

vector 𝑤𝑖  =  𝑎𝑖,1𝑣1 +⋯+ 𝑎𝑖,𝑛𝑣𝑛. Let 𝑉 and 𝑊 be column vectors (𝑣1, … , 𝑣𝑛) and (𝑤1, … , 𝑤𝑛) 

respectively. Then 𝑊  =  ℳ𝑉 , where ℳ is the matrix below. 

 

Then {𝑤1, … , 𝑤𝑛} is also a basis for 𝐿 if and only if det(ℳ) = ±1 [3, Ch. 6.4]. Intuitively, this 

means that the volume of the parallelepipeds formed by both bases, and thus the average distance 

between lattice points, are the same. 

Lattice reduction is the process of finding a shorter and more orthogonal basis (non-zero) vectors 

to a lattice. 

In open literature, the most efficient attacks against NTRU have been with lattice reduction 

algorithms [1]. That is, constructing the 2𝑛 - dimensional lattice 𝐿𝑁𝑇𝑅𝑈, whose vectors form rows 

of the matrix ℳ𝑁𝑇𝑅𝑈 as shown below, we can show that the vector (𝑓, 𝑝𝑔)  =
 (𝑓0, … , 𝑓𝑛−1, 𝑝𝑔0, … , 𝑝𝑔𝑛−1) lies in 𝐿𝑁𝑇𝑅𝑈. 

 

Note that ℳ𝑁𝑇𝑅𝑈 is composed of 4 𝑛 × 𝑛 square matrices. Since ℳ𝑁𝑇𝑅𝑈 is a triangular matrix, 

det(ℳ𝑁𝑇𝑅𝑈)   =  𝑞𝑛. The upper left block is the identity matrix; the upper right block is made of 

cycles of the coefficients of ℎ ; the lower left block is a zero matrix; and the lower right block is 

𝑞 times the identity matrix. As such, it is often (and will, for this paper) be abbreviated to 

. 

In this paper, the rows of the matrix are the vectors; other literature might show the transpose of 

this matrix, with its columns as vectors. 



   

 

  

 

Now, we will show that (𝑓,  𝑝𝑔) is a vector in 𝐿𝑁𝑇𝑅𝑈. Since 𝑓  ⋆  ℎ  ≡  𝑝𝑔 (mod 𝑞), for some 

polynomial 𝑢(𝑥)  ∈  𝑅, 𝑓  ⋆  ℎ  =  𝑝𝑔  +  𝑞𝑢  . Thus, we find that (𝑓, −𝑢)ℳ𝑁𝑇𝑅𝑈 =  (𝑓, 𝑝𝑔) showing 

that it is in 𝐿𝑁𝑇𝑅𝑈[3, Ch. 6.11]. Thinking about the full 2𝑛  ×  2𝑛 matrix multiplication, we can 

observe that [𝑥𝑘]𝑢 corresponds with the number of 𝑞 s we “mod” off [𝑥𝑘](𝑓  ⋆  ℎ) to obtain 𝑝  ⋅
 [𝑥𝑘]𝑔. We will explore this approach later on in section 4 . 

However, it is not automatically clear why should find shorter bases. Firstly, we will prove that 
(𝑓, 𝑝𝑔) is highly likely to be one of the shortest vectors in 𝐿𝑁𝑇𝑅𝑈. In the following paragraphs 

after, we prove that (𝑓, 𝑝𝑔) is a basis vector (and thus can be attacked by lattice reduction). 

The Gaussian Heuristic for a lattice 𝐿 of 𝑛 dimensions is a prediction of the length of the shortest 

nonzero vector in a randomly chosen lattice [3, Ch. 6.5]. It is given by 

𝜎(𝐿)  =  √
2𝑛

𝜋𝑒
 |𝑑𝑒𝑡ℳ𝐿|

1

𝑛  =  √
2𝑛

𝜋𝑒
 (det 𝐿)

1

𝑛. 

We get the Gaussian Heuristic for 𝐿𝑁𝑇𝑅𝑈 to be 

𝜎(𝐿𝑁𝑇𝑅𝑈)  =  √
2(2𝑛)

𝜋𝑒
 (det 𝐿𝑁𝑇𝑅𝑈)

1

2𝑛  =  2√
𝑛𝑞

𝜋𝑒
 . 

From above, we get 

||𝑓||  ≈  √
𝑛

3
⋅ 12 +

𝑛

3
⋅ (−1)2 =  √

2𝑛

3
  and  ||𝑔||  ≈  √

𝑛

4
⋅ 12 +

𝑛

4
⋅ (−1)2 =  √

𝑛

2
. 

And hence, we estimate the length of (𝑓, 𝑝𝑔) to be   

||(𝑓, 𝑝𝑔)||  =  √
2𝑛

3
  +  𝑝  ⋅  √

𝑛

2
. 

Using the sample perimeters 𝑛  =  509 , 𝑝  =  3 , and 𝑞  =  2048 , we get 

||(𝑓, 3𝑔)||  ≈  66.280  ≪  𝜎(𝐿𝑁𝑇𝑅𝑈)  =  698.76 (5𝑠𝑓). 

In fact, the existence of such a short vector (𝑓, 𝑝𝑔) would be incredibly surprising had we not 

constructed 𝐿𝑁𝑇𝑅𝑈 such that (𝑓, 𝑝𝑔) is a lattice point. Thus, it is highly likely (𝑓, 𝑝𝑔) is the 

shortest vector in 𝐿𝑁𝑇𝑅𝑈. 

We define the 𝑖 -th minima for a lattice, 𝜆𝑖(𝐿) for the 𝑖 -th shortest vector in that lattice.  

So how do we know that (𝑓, 𝑝𝑔) is even a basis vector in 𝐿𝑁𝑇𝑅𝑈? 

We prove in Annex B that any vector 𝑤  =  𝑎1𝑣1 +⋯+ 𝑎𝑛𝑣𝑛 with gcd(𝑎1, … , 𝑎𝑛)   =  1 can be a 

basis vector of some basis. 𝜆1 definitely has coefficients that fit this criterion; else, there exist a 

shorter vector where each coefficient is divided by the gcd(𝑎𝑖). 

Now we can finally explore lattice reduction algorithms.  

We begin with ℤ (1 dimension). Since 1 vector is trivial, we give ourselves 2 linearly dependent 

vectors 𝑣1, 𝑣2. Without loss of generality, we suppose ||𝑣1||  ≥  ||𝑣2||. A straightforward approach 

would be to take the longer vector, and subtract off the shorter vector once (i.e. 𝑣1 − 𝑣2). Then 

we repeat this so long as ||𝑣1|| is greater than 0 . Since 𝑣1 and 𝑣2 are 1 - dimensional, we can treat 



   

 

  

 

them as numbers. Hence, letting ||𝑣1||  =  𝑘1 and ||𝑣2||  =  𝑘2, the step above is equivalent to 

taking 𝑘1 (mod 𝑘2). If the new 𝑣1
′   =  𝑘1 (mod 𝑘2)  <  𝑣2, we swap the vector names and repeat the 

first step. We can then loop this process until 𝑣1
𝑘   =  𝑣2

𝑘. 

This process is similar to the Euclidean algorithm for finding the greatest common factor. At the 

heart of this algorithm is the fact that gcd(𝛼, 𝛽)   =   gcd(𝛼, 𝛽 mod 𝛼). In fact, by Bézout’s Identity, 

given 2 numbers, 𝛼, 𝛽  ∈  ℤ , there exists 𝑥, 𝑦  ∈  ℤ such that 𝛼𝑥 + 𝛽𝑦  = gcd(𝛼, 𝛽). Furthermore, the 

solution to any linear combination of 𝛼, 𝛽 is a multiple of gcd(𝛼, 𝛽). Hence, this tells us that the 

shortest vector formed by 𝑣1, 𝑣2 has a magnitude gcd(𝑘1, 𝑘2), and can be found in polynomial 

time. 

In 2 dimensions, with independent vectors 𝑣1, 𝑣2 and ||𝑣1||  ≥  ||𝑣2||, we hope to have find an 

analogous idea of having the longer vector “mod” the smaller one. One thing way we can do this 

is by subtracting from the longer vector its projection onto the shorter vector. In other words, 

 𝑣1
′    =  𝑣1  −  𝜇1,2  ⋅  𝑣2, where 𝜇1,2  =  

⟨𝑣1,𝑣2⟩

⟨𝑣2,𝑣2⟩
  =  ||𝑣1|| cos 𝜃  .  

Note that 𝜇1,2 is the component of 𝑣1 parallel to 𝑣2 , and that in general, 𝜇𝑖,𝑗 can be read as “the 

projection of 𝑣𝑖 on 𝑣𝑗”. 

Since we subtract off the part parallel to 𝑣2, note that 𝑣1  −  𝜇1,2  ⋅  𝑣2 is orthogonal to 𝑣2. Any 

further subtractions will increase the magnitude of the vectors. However, this is cheating since 

𝑣1  −  𝜇1,2  ⋅  𝑣2 is not usually a lattice point. Instead, we take 𝜇1,2
′   =  ⌊𝜇1,2⌉  =  ⌊ ||𝑣1|| cos𝜃  ⌉, 

finding the integer multiple of 𝑣2 that makes 𝑣1
′  shortest. With this, we arrive at the basis of the 

Lagrange-Gauss algorithm [4, Ch. 17.1]. The algorithm’s pseudocode given in Annex C. 

However, in higher dimensions, it becomes unclear which vectors should be subtracted from 

which in order to obtain the shortest vector. In particular, greedy pairwise reductions may fail to 

fully reduce a lattice. 

In 1982, Lenstra, Lenstra and Lovasz published the LLL algorithm [5], a revolutionary algorithm 

for lattice reduction. More specifically, the LLL algorithm terminates in polynomial time, and 

guarantees finding a vector 𝑣𝑖 such that ||𝑣𝑖||  ≤  2
𝑛−1

2 ⋅  ||𝜆1(𝐿)||. This is based off 2 conditions. 

Before going into these conditions, we define the Gram-Schmidt vector 𝑣𝑖
∗ as the projection of 

𝑣𝑖onto the subspace orthogonal to the span of {𝑣1, … , 𝑣𝑖−1}. Additionally, all Gram-Schmidt 

vectors are to be orthogonal to each other. Rigorously, we get 

𝑣𝑖
∗  =  𝑣𝑖   −   ∑ 𝜇𝑖,𝑗

𝑖−1
𝑗 = 1   ⋅  𝑣𝑗

∗ , where, similar to above, 𝜇𝑖,𝑗  =  
⟨𝑣𝑖,𝑣𝑗⟩

⟨𝑣𝑗,𝑣𝑗⟩
. 

Note that 𝑣1
∗  =  𝑣1 by definition. Then for a lattice 𝐿 with a basis 𝐵  =  {𝑣1, … , 𝑣𝑛} (with some 

order), we can get a corresponding Gram-Schmidt basis 𝐵∗  =  {𝑣1
∗, … , 𝑣𝑛

∗}. Note that 𝐵∗ (and so 

the LLL algorithm below) is dependent on the ordering of 𝐵 . 

Since 𝜇𝑖,𝑗 is, more likely than not, non-integral, 𝐵∗ is not a lattice basis for 𝐿 , but rather a basis 

only for the vector subspace spanned by 𝐵 . It is interesting to note that det(𝐿)   =  ∏ 𝑣𝑖
∗ 

  . 

Intuitively, this is because all 𝑣𝑖
∗ are orthogonal and thus form a parallelepiped in the form of a 

hyper-cuboid. For more details, see [3, Ch. 6.12]. 



   

 

  

 

Now onto the conditions for LLL. A basis is said to be LLL-reduced if it satisfies 2 conditions: 

1. Size Condition: 

|𝜇𝑖,𝑗|  ≤  
1

2
, for all 1  ≤  𝑗  <  𝑖  ≤  𝑛 . 

2. Lovász Condition: 

||𝑣𝑖
∗||

 2
  ≥  (𝛿  −  𝜇𝑖,𝑖−1

2 )||𝑣𝑖−1
∗ ||

 2
, for all 1  <  𝑖  ≤  𝑛 , for some constant 𝛿  <  1 . 

The Size Condition ensures that vectors cannot be made shorter by some sort of pairwise 

subtraction. 

The Lovász Condition is slightly more complicated. Note that 𝑣𝑖
∗is orthogonal to 𝑣𝑖−1. Then we 

can rewrite the condition as: 

||𝑣𝑖
∗  +  𝜇𝑖,𝑖−1𝑣𝑖−1||

2
  ≥  𝛿 ||𝑣𝑖−1

∗ ||
 2

 

⇒ || Projection of 𝑣𝑖
∗ onto the orthogonal span of {𝑣1, … , 𝑣𝑖−2}|| 

2                   

                 ≥  𝛿 ||  Projection of 𝑣𝑖−1
∗  onto the orthogonal span of {𝑣1, … , 𝑣𝑖−2}|| 

2  

Keeping 𝛿  <  1 ensures that the LLL algorithm terminates in polynomial time; 𝛿 is often set at 
3

4
. 

However, the effects of 𝛿 are quite unpredictable and a larger 𝛿 does not necessarily imply a 

better LLL-reduced basis [3, Ch. 6.12]. An implementation of the LLL algorithm on Python can 

be found in Annex D. 

 

4 A Subset Sum Attack 

The Subset Sum Problem (SSP) is a famous NP-Complete problem: Given a set (or multiset, 

since repeats are allowed) of integers 𝑆 , can we determine if some subset of 𝑆 sums up to some 

arbitrary 𝑘 ? This decision problem is NP-Complete. Furthermore, if such a subset does exist, can 

we generate all valid subsets? 

It is our hope that since SVP is a hard problem, while SSP is NP-Complete, that perhaps some 

insight can be found in translating from finding the shortest vector into solving the subset sum 

problem. 

In Section 3 , we noted that [𝑥𝑘](𝑓  ⋆  ℎ)  −  [𝑥𝑘]𝑢  =  𝑝  ⋅  [𝑥𝑘]𝑔. By definition (see Section 1 ), we 

also know that [𝑥𝑘]𝑔  = ∑ 𝑓𝑖
 
 𝑖+𝑗 ≡ 𝑘 (mod 𝑞) ℎ𝑗. These 2 equations give us a different perspective to 

look at the problem. 

From here, we denote 𝐹 as the reverse of 𝑓 (ie. 𝐹  =  𝐽𝑓 , where 𝐽 is an exchange matrix). Then, we 

get  

[𝑥𝑘]𝑔  = ∑ 𝑓𝑖
 
 𝑖+𝑗 ≡ 𝑘 (mod 𝑞) ℎ𝑗  =  ⟨𝑥𝑘   ⋆  𝐹, ℎ⟩, 

where ⟨𝑎, 𝑏⟩ is the dot product of 𝑎 and 𝑏 . 

At the same time, since 𝑓 , and so 𝐹 , is ternary, ⟨𝐹, ℎ⟩ is equivalent to either choosing some 

element in ℎ , the negative of that element, or not choosing that element at all. More specifically, 



   

 

  

 

if 𝐹𝑖   =  1, then we “choose” ℎ𝑖. If 𝐹𝑖   =   − 1, we “choose” −ℎ𝑖. And if 𝐹𝑖  =  0, we do not 

“choose” ℎ𝑖. Afterwards, we sum up all of the “chosen” terms as 𝑀 . If 𝑞 divides 𝑀 with a 

remainder of −𝑝, 0, 𝑝 , we say that 𝑀 “passes”. Our aim is to find an 𝐹′ such that for every cycle 

of 𝐹′, its corresponding 𝑀 passes. Then that corresponding 𝑓′ will suffice as a key. 

One important note is that while some versions of SSP include negative numbers in 𝑆 , the fastest 

(albeit exponential-time) algorithms only consider positive terms. To overcome this problem, 

instead of finding a subset of the terms of ℎ , we define the ordered set 

ℎ𝐶   =  {𝑞 − ℎ𝑖: 0 ≤ 𝑖 < 𝑛}. 

Then, choosing the negative of some element ℎ𝑖 is equivalent to choosing ℎ𝑖
𝐶 in modulo 𝑞 . So, 

we consider the subsets present in the ordered multiset  

𝐻  =  ℎ  ∪  ℎ𝐶   =  {ℎ0, … ℎ𝑛−1, ℎ0
𝐶 , … ℎ𝑛−1

𝐶 } 

instead (technically speaking, ℎ is not a set, but this notation treats its coefficients as one). Then 

we only need to choose either 0 or 1 for each element in 𝐻 . 

Running a SSP oracle here will return us a binary vector of 2𝑛 dimensions which we will call 𝐹2
′. 

Treating 𝐻 as a vector (it is ordered), ⟨𝐻, 𝐹2
′⟩ mod 𝑞 will give some −𝑝, 0, 𝑝 . We obtain the 𝑛 - 

dimensional ternary vector 𝐹′ by taking [𝑥𝑖]𝐹′  =  [𝑥𝑖]𝐹2
′  −  [𝑥𝑛+𝑖]𝐹2

′ for 0 ≤ 𝑖 < 𝑛 . 

What we can do is to generate a list of all possible 𝐹′ that pass, 𝐿0. Then depending on which is 

computationally faster, we can do two things. Firstly, we can do the multiplication ℎ  ⋆  𝑓′and 

check for correctness (𝑓′is the reverse of 𝐹′). If some corresponding 𝑝𝑔′is found, 𝑓′is a key. 

Secondly, we can find a second list of possible 𝐹′ that pass for the set 𝐻 cycled by 𝑖 , 𝐿𝑖 (that is, 

treating 𝐻 as a polynomial, ⟨𝑥𝑖  ⋆  𝐻, 𝐹′⟩ mod 𝑞  =   − 𝑝, 0, 𝑝). Only common elements in 𝐿0 and 𝐿𝑖 

need to be checked by multiplication; alternatively, any common element in 𝐿0, … , 𝐿𝑛−1 will 

serve as a key. 

Brute forcing for 𝐹2
′ will be on the order of Ο(22𝑛) since for each of the 2𝑛 elements we choose 

either 0 or 1 . However, SSP is a highly studied problem and several ways have been discovered 

to decrease its runtime. In the following section, we provide a simple sketch of an algorithm 

based on a dynamic programming. In section 6 , we will discuss ways to decrease computations. 

 

5 A Sketch of a Python Dynamic Programming Algorithm Attack 

This algorithm (Annex E) comprises of 2 segments. Let #(𝐻) be the number of elements in the 

multiset 𝐻 and 𝑋𝑠𝑢𝑚 = 𝑘 ⋅ 𝑞 + 𝑟 for 0  ≤  𝑘  ≤  𝑛 and 𝑟  ∈  {−3,  0,  3}. The first segment fills out a 

table called 𝑑𝑝 which has #(𝐻) rows and 𝑋𝑠𝑢𝑚  +  1 columns using dynamic programming. Given 

a set 𝑆 comprising of 𝑛 + 1 elements (due to zero indexing on Python):  

𝑆  =  {𝑥0, 𝑥1, … , 𝑥𝑛}. 

𝑑𝑝[𝑖][𝑗] is True if a sum 𝑗 can be formed from a subset of 𝑆 , 

𝑆𝑖  =  {𝑥𝑘:  0  ≤  𝑘  ≤  𝑖}, where 0 ≤ 𝑖 ≤ 𝑛  

Otherwise, 𝑑𝑝[𝑖][𝑗] is False.  



   

 

  

 

Before the program starts, all elements in the table 𝑑𝑝 are initialised as False. Afterwards, the 

program starts from 𝑑𝑝[0][0], increments through all possible 𝑗 s before incrementing 𝑖 once and 

repeats, until the whole table is filled out. The bottom right corner of 𝑑𝑝 , which is when the first 

segment terminates would be 𝑑𝑝[#(𝐻)  −  1][𝑋𝑠𝑢𝑚] (due to zero indexing). The logic of the 

program is shown and explained in the left-side flow chart below (Fig. 1). 

The information contained within 𝑑𝑝 will be important for the decision making and logic of the 

second segment of the algorithm, which will recursively traverse 𝑑𝑝 to find all possible subsets 

of 𝐻 . First, the program checks whether or not 𝑑𝑝[#(𝐻)  −  1][𝑋𝑠𝑢𝑚] is True. If it is False, there 

are no possible subsets and the program terminates immediately. 

Now, we introduce a recursive function printSubsetsRec(𝐻, 𝑖, 𝑠𝑢𝑚𝑡𝑜, 𝑠). 𝐻 is defined above; 𝑖  is 

the index of the element it is currently examining; 𝑠𝑢𝑚𝑡𝑜 is the “distance” remaining to reach 

𝑋𝑠𝑢𝑚 after subtracting the value of the elements it has considered already; and 𝑠 is a list of 

indices of the elements that are considered as part of the sum. 

After filling up the table 𝑑𝑝 , we run printSubsetsRec(𝐻, #(𝐻)  −  1, 𝑋𝑠𝑢𝑚, [ ]), where [ ] is an empty 

list. Every other recursive call of printSubsetsRec( ) will then be derived from this parent 

function. The logic of the program is shown and explained in the right-side flow chart below 

(Fig. 2). 

For both sections of the code, it will run through 3𝑛 possible values of 𝑋𝑠𝑢𝑚 (i.e. −𝑝/0/𝑝  +
 𝑘𝑞 for 0  ≤  𝑘  ≤  𝑛 ). This is to lift the modulo 𝑞 coefficients into the real numbers1, while noting 

that the maximum bound of the sum of all terms in 𝐻 is 𝑛 ⋅ 𝑞 . 

When the program returns the indices of a subset of 𝐻 that sums to 𝑋𝑠𝑢𝑚, we obtained a ternary 

vector (𝐹′) by the process described in section 4 . 

Some conditions have also added on to the core algorithm to filter the answers obtained and 

reduce the number of paths the algorithm needs to go through before pruning a branch. 

Every time we add a new element to 𝑠 , check if (𝑖 + 𝑛) mod (#𝐻) not in 𝑠. In other words, check 

if the 𝑖 - th element already has its complement in the set. If True, reject adding 𝑖 to 𝑠 . This 

ensures that we find unique ternary vectors for each value of 𝑋𝑠𝑢𝑚. 

 

 
1 In other words, to bring the mod world into the real number world! 

 



   

 

  

 

 

Fig. 1 (left): The flowchart that outlines and 

explains the main logic for assigning the 

values of 𝑑𝑝[𝑖][𝑗] in 𝑑𝑝 . 
 

Fig. 2 (right): The flowchart that outlines 

and explains the main logic for the 

printSubsetsRec( ) function. 

 

Discussion 

Note that the algorithm and ideas above are not fully explored. In this section, we will briefly 

mention some possible addition exploration paths. 

Our target sum ranges −𝑝/0/𝑝  +  𝑘𝑞  for 0  ≤  𝑘  ≤  𝑛 . However, we can probably guess that the 

key will not exist in the subsets (if any) for 𝑘  =  0 , and similarly, for 𝑘  =  𝑛 . In fact, as the 

coefficients of ℎ are, as far as we can tell, very close to random, the greatest number of subsets of 

𝐻 can be found when 𝑘  ≈  𝑛/2 . With that in mind, we can suspect the distribution of actual keys 

𝑓 would be greater for certain values of 𝑘 . Hence, we can reduce the values 𝑘 we need to check 

while still being able to find a key with high probability. Also, we do not actually need to run the 

program for all the targets 𝑝, 0, −𝑝 . Instead, just choosing one of the 3 targets would suffice for 

us to find a key. 



   

 

  

 

This second exploration is of much greater significance. While the subset sum program is 

running, we should also take note of certain 𝐹′ (or 𝑓′) with short (albeit slightly longer) 

corresponding 𝑔′. We suspect that a small tweak of the Coppersmith attack [6] can be applied. 

As mentioned in [6], we can then construct a linear system of equations to recover the message 

with several longer 𝑔′ (and error correcting codes). In other words, our algorithm need not find 

exact 𝐹′, which will significantly increase the proportion of useful subsets. Doing a probability 

analysis on the average length of 𝑔′ can give us an insight into the rate of success of finding 

useful 𝐹′. 
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Annex A 

Note that the points of intersection are not 𝑓 ; but rather if ℎ  =  [2,4] or ℎ  =  [2,4,1], then the 

intersections represent the possible solutions vectors [𝑥, 𝑦]  =  [𝑥𝑖  ⋆  𝐽𝑓] and [𝑥, 𝑦, 𝑧]  =  [𝑥𝑖  ⋆  𝐽𝑓] 

respectively for some 0  ≤  𝑖  <  𝑛 . Then 𝑝  ⋅  𝑔(𝑖−1 mod 𝑛)  =  ⟨ℎ, [𝑥, 𝑦]⟩  ≡  0 mod 𝑞  and 𝑝  ⋅  𝑔𝑖−1  =

 ⟨ℎ, [𝑥, 𝑦, 𝑧]⟩  =  0 respectively. 

 

Fig. 3 (above): 

𝑥2 + 𝑦2  =  5 and ⟨[2,4], [𝑥, 𝑦]⟩  =  2𝑥  +  4𝑦  =  0 on Desmos. 

Instead of finding all integer solutions on the circle, we cut down to finding integer solutions at 

the intersection of graphs (number of solutions reduced by 1 dimension). 

 

Fig. 4 (above): 

𝑥2 + 𝑦2 + 𝑧2 =  5 and 2𝑥  +  4𝑦  +  𝑧  =  0 on GeoGebra (all integer solutions in dark blue). 

Again, the second equation reduces the number of solutions by 1 dimension. 



   

 

  

 

  



   

 

  

 

Annex B 

A lattice 𝐿 is spanned by a set of basis vectors, {𝑣1, … , 𝑣𝑛}. We define ℳ𝐿 to be the lattice’s 

corresponding matrix, with columns as vectors. By definition, all lattice vectors are in the form 

of 𝑤  =  ∑ 𝑎𝑖
𝑛
𝑖 = 1 𝑣𝑖. Below, we prove that if gcd(𝑎1, … , 𝑎𝑛)   =  1, then that vector is a basis vector 

in some basis that spans the lattice. 

We know that  

gcd(𝑎1, … , 𝑎𝑛)   =   gcd(𝑎1, … , 𝑎𝑖−1, 𝑎𝑖+1, … , 𝑎𝑗−1, 𝑎𝑗+1, … 𝑎𝑛, gcd(𝑎𝑖, 𝑎𝑗)),  

for 𝑖, 𝑗  ∈  {1, … , 𝑛} 

This reduces finding the greatest common divisor of multiple elements to finding the greatest 

common divisor (gcd) of some 2 elements repeatedly. As seen in the Euclidean Algorithm, we 

know that gcd(𝛼, 𝛽)   =   gcd(𝛼, 𝛽 mod 𝛼). Since we can express a gcd of multiple elements as gcd 

of pairs of numbers, we know that there exists at least one 𝑎𝛾 such that  

𝑎𝛾  mod 𝑎1, … , 𝑎𝛾−1, 𝑎𝛾+1, … , 𝑎𝑛  =  1, 

which implies 

1  =  𝑎𝛾   −  𝑘1𝑎1  −   …   −  𝑘𝛾−1𝑎𝛾−1  −  𝑘𝛾+1𝑎𝛾+1  −   …   −  𝑘𝑛𝑎𝑛 for some 𝑘𝑖. 

What we want to do is find some “path” from the row vector (𝑎1, … , 𝑎𝑛) to the almost zero vector 

with a 1 in the 𝑖 - th position, (0, … ,1,… ,0). These coefficients are symbolic of a larger 

𝑛  ×  𝑛 matrix with the columns 𝑎𝑖𝑣𝑖. Since we can find 1 as some linear combination of 𝑎𝑖, we 

know that we can achieve this “path” via addition (and subtraction) only; hence we can express 

this “path” as a transformation matrix (or as a composition of multiple simpler transformation 

matrices). 

More specifically, if one of the steps in this "path" is to take 𝑎𝑖  −  𝑘𝑗𝑎𝑗, then this can be denoted 

by the 𝑛  ×  𝑛 matrix ℳ with 1 s on the main diagonal and ℳ𝑗,𝑖  =   − 𝑘𝑖. Since multiplying a 

matrix by the identity matrix keeps the matrix the same, adding ℳ𝑗,𝑖  =   − 𝑘𝑖 keeps all rows of 

the product the same except for the 𝑖 - th row. This is equivalent to taking the entire 𝑗 - th row and 

subtracting it off the 𝑖 - th row (all other terms of the 𝑗 - th row are 0 ). 

After at most (𝑛 − 1) steps to make one of the entries of the row vector 1 , and another at most 
(𝑛 − 1) steps to make all other entries 0 , we have an upper bound of 2(𝑛 − 1) steps, each 

represented by their own matrix. 

We will be using the notation ℳ 𝑖𝑡 to represent the 𝑖 - th step of this transformation. The small “t” 

added is to indicated “transformation” and to ensure that this notation does not get confused with 

matrix exponentiation. 

Keep in mind that matrix multiplication is not commutative. We let 

ℳ1𝑡…ℳ𝑛𝑡  =    ∏ ℳ𝑖𝑡 
  . 

Then note that (𝑎1, … , 𝑎𝑛)
𝑇   ∏ ℳ𝑖𝑡 

   gives the desire row vector of all 0 s and one 1 . Without loss 

of generality, we assume that the 𝛾 - th entry is 1 . 



   

 

  

 

Then taking ℳ𝐿 ((∏ ℳ𝑖𝑡 
  )

𝑇
)
−1

 will give us a lattice with the 𝛾 -th column as the chosen vector 

𝑤  =  ∑ 𝑎𝑖
𝑛
𝑖 = 1 𝑣𝑖. 

Now, we just need to prove that what we get is a still a basis. Since all ℳ 𝑖𝑡 are triangular 

matrices, det(ℳ𝑘𝑡)   =   ± 1 for each 𝑘 . Then since det(𝐴𝐵)   =   det(𝐴) det(𝐵), it follows that 

det(∏ ℳ 𝑖𝑡 
  )   =  ∏ det(ℳ𝑖𝑡) 

    =   ± 1. 

Hence ℳ𝐿 ((∏ ℳ𝑖𝑡 
  )

𝑇
)
−1

 is also basis for the lattice 𝐿 , containing 𝑤 as one of its basis vectors. 

QED. 

  



   

 

  

 

Annex C 

Lagrange-Gauss Algorithm: 

Input: 𝑣1, 𝑣2 with ||𝑣1||  ≥  ||𝑣2|| 

Output: 𝑣1, 𝑣2, a new basis, with 𝑣2 short 

1. Take 𝑣1  =  𝑣1  −  ⌊𝜇1,2⌉ 𝑣2, where 𝜇𝑖,𝑗  =  
⟨𝑣𝑖,𝑣𝑗⟩

⟨𝑣𝑗,𝑣𝑗⟩
  =  ||𝑣𝑖|| cos 𝜃   

2. If ||𝑣2||  >  ||𝑣1||: 

a. Swap 𝑣1 and 𝑣2 

b. Repeat from 1. 

3. Else: 

a. Return 𝑣1, 𝑣2, with 𝑣2 short 

 

 

  



   

 

  

 

Annex D 

LLL Algorithm: 

 
# insert number of dimensions here 
n =  
# insert input matrix as a list of lists here, where each vector is an list 
in the bigger list 
v =  
 
v_gs = [[0 for i in range(n)] for i in range(n)] 
for i in range(n): 
    for j in range(n): 
        v_gs[i][j] = v[i][j] 
  
v_rs = [[0 for i in range(n)] for i in range(n)] 
for i in range(n): 
    for j in range(n): 
        v_rs[i][j] = v[i][j] 
  
def dot(V1,V2): 
    V12 = 0 
    for i in range(n): 
        V12 += V1[i] * V2[i] 
    return V12 
  
def sqmag(V): 
    sqmagV = dot(V,V) 
    return sqmagV 
  
def proj(V2,V1): 
    proj2on1 = dot(V1,V2)/sqmag(V1) 
    return(proj2on1) 
  
# gram schmidt vectors 
def gsv(kv_gs,kv): 
    for i in range(1,n): 
        for j in range(i): 
            for h in range(n): 
                kv_gs[i][h] -= proj(kv[i],kv_gs[j]) * kv_gs[j][h] 
    return kv_gs 
 

 

 

# reduction step 
def reductionstep(kv_rs,kv,kv_gs): 
    for i in range(1,n): 
        for j in range(i): 



   

 

  

 

            for h in range(n): 
                kv_rs[i][h] -= round(proj(kv[i],kv_gs[j]) + 0.001) * 
kv_rs[j][h] 
    return kv_rs 
    
# updating v 
def updatev(kv_rs): 
    v = [[0 for i in range(n)] for i in range(n)] 
    for i in range(n): 
        for j in range(n): 
            v[i][j] = kv_rs[i][j] 
    return v 
  
k = 1 
Counter = 0 
  
# LLL 
while k < n: 
    print(k) 
    v_gs = gsv(v_gs,v) 
    reductionstep(v_rs,v,v_gs) 
  
    # lovasz condition and swap 
    if sqmag(v_gs[k]) >= (0.75 - (proj(v[k],v_gs[k-1]))**2) * sqmag(v_gs[k-
1]): 
        k += 1 
    else: 
        middleman = v_rs[k] 
        v_rs[k] = v_rs[k-1] 
        v_rs[k-1] = middleman 
        k = max(k-1,1) 
  
    v = updatev(v_rs) 
    v_gs = updatev(v_rs) 
    Counter += 1 
  
print('Counter = '+ str(Counter)) 
print('Reduced Matrix:') 
for v in v_rs: 
    print(str(v) + ',') 

 

 

  



   

 

  

 

Annex E 

SSP Algorithm: 

 
# A Python program to count all subsets with given sum. 
# dp[i][j] is going to store True if sum j is 
# possible with Hay elements from 0 to i. 
dp = [[]] 
  
def dot(v1,v2): 
     V12 = 0 
     for i in range(n): 
         V12 += v1[i] * v2[i] 
     return V12 
  
def display(v): 
    reverse_f_prime = [0 for i in range(n)] 
    for value in v: 
        if value >= n: 
            reverse_f_prime[value - n] -= 1 
        else: 
            reverse_f_prime[value] += 1 
  
    # L_0 will contain all "candidates" of f_prime that need to be tested 
    L_0.append(reverse_f_prime) 
      
    # Prints out the solution if found, in our case we know the key      
already 
    # and assuming no other solutions exist 
    if reverse_f_prime == reverse_f: 
        print(reverse_f_prime) 
   
# A recursive function to print all subsets with the 
# help of dp[][]. list s[] stores current subset. 
def printSubsetsRec(H, i, sumto, s): 
    # If we reached end and sum is non-zero. We print 
    # s[] only if H[0] is equal to sum OR dp[0][sum] 
    # is True. 
    if i == 0 and sumto != 0 and H[i] == sumto and ((i + n) % q) not in s 
and i >= 0: 
        s.append(i) 
        display(s) 
        s = [] 
        return 
   

 

    # If sum becomes 0 
    if (i == 0 and sumto == 0 and i >= 0): 
        display(s) 



   

 

  

 

        s = [] 
        return 
   
    # If given sum can be achieved after ignoring 
    # current element. 
    if i > 0 and sumto >= 0: 
        if (dp[i-1][sumto]): 
            # Create a new list to store path 
            b = [] 
            b.extend(s) 
            printSubsetsRec(H, i-1, sumto, b) 
   
    # If given sum can be achieved after considering 
    # current element. 
    if (sumto >= H[i] and dp[i-1][sumto-H[i]] and (i + n) % q) not in s and 
i > 0: 
        s.append(i) 
        printSubsetsRec(H, i-1, sumto-H[i], s) 
   
# Prints all subsets of H[0..H_length-1] with sum 0. 
def printAllSubsets(H, H_length, sumto): 
    if (H_length == 0 or sumto < 0): 
        return 
   
    # Sum 0 can always be achieved with 0 elements 
    global dp 
    dp = [[False for i in range(sumto+1)] for j in range(H_length)] 
   
    for i in range(H_length): 
        dp[i][0] = True 
   
    # Sum H[0] can be achieved with single element 
    if (H[0] <= sumto): 
        dp[0][H[0]] = True 
 
    # Fill rest of the entries in dp[][] 
    for i in range(1, H_length): 
        for j in range(0, sumto + 1): 
            if (H[i] <= j): 
                dp[i][j] = (dp[i-1][j] or dp[i-1][j-H[i]]) 
            else: 
                dp[i][j] = dp[i - 1][j] 
 
    if (dp[H_length-1][sumto] == False): 
        print("There are no subsets with sum ", sumto) 
        return 
   
    # Now recursively traverse dp[][] to find all 
    # paths from dp[H_length-1][sum] 



   

 

  

 

    s = [] 
    printSubsetsRec(H, H_length-1, sumto, s) 
  
k = 9 
q = 128 
h = [59,88,122,41,7,116,33,121,99,42,73,26,64,59,37,103,41,36,113] 
h_comp = [q - i for i in h] 
H = h + h_comp 
n = len(h) 
H_length = len(H) 
  
L_0 = [] 
  
# This key and h were generated using a code and we read them in reverse 
# so note that they are reversed 
reverse_f = [0,0,1,0,0,-1,1,-1,1,0,-1,1,0,-1,-1,1,1,-1,-1] 
  
# Considering all possibilities in mod world 
for k in range(0,n+1): 
    for adder in range(-3, 4, 3): 
        sumto = k * q + adder 
        print("sumto is now: " + str(sumto)) 
                   # The program breaks if sumto is negative, so we must prevent that 
        if sumto < 0: 
            sumto = 0 
        printAllSubsets(H,H_length,sumto) 
print("bye") 
  
# This code is adapted from Lovely Jain 

 

 
 

 


